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STOPPING AT THE MAXIMUM OF
GEOMETRIC BROWNIAN MOTION
WHEN SIGNALS ARE RECEIVED

X. GUO,∗ Cornell University

J. LIU,∗∗ Yale University

Abstract

Consider a geometric Brownian motion Xt(ω) with drift. Suppose that there is an
independent source that sends signals at random times τ1 < τ2 < · · · . Upon receiving
each signal, a decision has to be made as to whether to stop or to continue. Stopping at time
τ will bring a reward Sτ , where St = max(max0≤u≤t Xu, s) for some constant s ≥ X0.
The objective is to choose an optimal stopping time to maximize the discounted expected
reward E[e−rτi Sτi

| X0 = x, S0 = s], where r is a discount factor. This problem can
be viewed as a randomized version of the Bermudan look-back option pricing problem.
In this paper, we derive explicit solutions to this optimal stopping problem, assuming
that signal arrival is a Poisson process with parameter λ. Optimal stopping rules are
differentiated by the frequency of the signal process. Specifically, there exists a threshold
λ∗ such that if λ > λ∗, the optimal stopping problem is solved via the standard formulation
of a ‘free boundary’ problem and the optimal stopping time τ∗ is governed by a threshold
a∗ such that τ∗ = inf{τn : Xτn ≤ a∗Sτn }. If λ ≤ λ∗ then it is optimal to stop immediately
a signal is received, i.e. at τ∗ = τ1. Mathematically, it is intriguing that a smooth fit is
critical in the former case while irrelevant in the latter.
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1. Introduction

In [15], Shepp and Shiryayev proposed and analyzed the problem of determining

V∞(x, s) = sup
τ

Ex,s[e−rτ Sτ ], (1)

where r is a discount factor, St = max(max0≤u≤t Xu, s) for some fixed s ≥ x = X0, Xt is a
geometric Brownian motion such that

dXt = µXt dt + σXt dWt, (2)

with Wt a Wiener process, and τ is chosen among all choices of stopping time (the set of which
is denoted by B), meaning that no clairvoyance is allowed. They showed that the value function
is finite if and only if r > µ, and that the optimal stopping time τ ∗ is given by

τ ∗ = inf{t > 0 : Xt ≤ aSt },
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where

a =
(

β(α − 1)

α(β − 1)

)1/(α−β)

. (3)

Here, α and β, α > 1 > 0 > β, are the roots of

−r + µx + 1
2σ 2x(x − 1) = 0,

given by

α =
1
2σ 2 − µ +

√
( 1

2σ 2 − µ)2 + 2rσ 2

σ 2 , β =
1
2σ 2 − µ −

√
( 1

2σ 2 − µ)2 + 2rσ 2

σ 2 . (4)

Since payoffs of look-back options depend on the maximum or the minimum price of the
derivatives achieved during the lifetime, this optimal stopping problem can be viewed as a
perpetual look-back option pricing problem (see [4]).

In practice, however, stopping times may be discrete and choices of stopping time are limited.
For instance, the sale of stocks or the exercising of options might be triggered by the (instant)
arrival of information, such as news, insider information, rumor, misinformation, etc. This leads
to the natural consideration of corresponding optimal stopping time problems over a smaller
subset of B. Dupuis and Wang [5] studied the problem of pricing perpetual American options
with the choice of stopping time B(λ) = {τ1, τ2, . . .} such that τ1, τ2 − τ1, . . . , τi − τi−1 are
independent and identically exponentially distributed with parameter λ. Rogers and Zane [14]
studied liquidity issues in a similar setting. This particular subset of stopping times B(λ) makes
mathematical sense: if we assume that the arrival time of each piece of information follows an
(appropriate) independent distribution, and that these distributions are identical, then it is well
known that their superimposed process is Poisson.

Motivated by [5] and [14], we consider the problem of determining

V ∗(x, s, λ) = sup
τ∈B(λ)

E[e−rτ Sτ ], (5)

where St and Xt are as given above and B(λ) = {τ1, τ2, . . .}.
This is a discrete variant of (1), and may be viewed as a randomized version of the Bermudan

look-back option pricing problem. Moreover, following the notion of randomized stopping [11],
where the controller cannot stop the process but can increase the intensity of the stopping rate,
this problem may be regarded as having a stopping rate between 0 and λ.

The solution structure reveals an intriguing aspect of this problem: there is a bifurcation
in the form of the optimal policy depending on the rate λ. This is new and different from the
results of [5] and [14] (as well as the earlier works of [1], [2], [3], [9], [12], [15], and [17]),
where the conventional methodology of solving optimal stopping problems is to find the ‘free
boundary’ between the ‘continuation region’ and the ‘stopping region’. We, in contrast, show
that there exists a threshold λ∗ such that if λ > λ∗, the optimal stopping problem is solved via
the formulation of a free boundary problem for which the smooth-fit technique is applied; in
this case the optimal stopping time τ ∗ is governed by a threshold a∗ such that

τ ∗ = inf{τn : Xτn ≤ a∗Sτn}.
However, if λ ≤ λ∗ then it is optimal to stop as soon as the first signal is received, i.e. at τ ∗ = τ1.
In the latter case, the derivation of the solution is independent of the smooth-fit principle; rather,
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it is derived by solving some ‘variational inequalities’. As we will show, the Markov structure
of (Xt , St ) and the linearity of the payoff function play a critical role throughout the analysis.

The solution structure has a simple intuitive interpretation. If signals arrive infrequently,
one should stop as soon as possible because, in the presence of a discount factor, waiting for
the next chance will take too long to get better rewards. On the other hand, if the signal is
frequent then the constraint on stopping choices is less severe and provides sufficient flexibility
in finding optimal stopping rules according to the classic method. The key reason for this type
of bifurcation is that the utility function involves the running maximum St instead of Xt ; this
is in contrast to the results of [5]. Note that St no longer has an independent increment and
increases only when Xt = St .

The structure of the paper is as follows: for both cases (frequent and infrequent signals), we
present a proof using martingale theory, after a detailed derivation of the main theorem. At the
end of the paper, we compare the asymptotic behavior of the solution when λ → ∞ to that of
the solution found in [15].

2. Derivation of the main result

We consider the problem of finding

V ∗(x, s, λ) = sup
τ∈B(λ)

Ex,s[e−rτ Sτ ], (6)

where Xt is given by (2) and the Poisson process with parameter λ is independent of Xt .
As in [15], it is easy to see that the value function is infinite if r ≤ µ. Therefore, throughout

the paper, we make the following assumption.

Assumption 1. We let r > µ.

2.1. Frequent signals

2.1.1. Heuristic analysis. Note that the problem of determining (6) is a stopping time problem
with state space {(x, s), x ≤ s}. If we choose to stop at τ ∗ = τi for some i ≥ 1, then

dXt = µXt dt + σXt dWt, t < τ ∗,
St = Sτi

, t ≥ τ ∗.

(As such, one could view the process from a stochastic control perspective by introducing a
binary control variable u(t, ω), with u = 1 for t < τi and u = 0 for t ≥ τi , as in [5]).

Intuitively, when signals are received frequently (we will determine later the critical ‘thresh-
old’of this frequency), we will have enough freedom to optimally choose between stopping and
continuing. In this case, we can try to solve the problem using standard optimal stopping theory,
by finding the free boundary x = g(s) that separates the stopping region and the continuation
region: when x > g(s) we continue, and when x ≤ g(s) we stop immediately. Denoting this
‘guessed’ function by V (x, s), we first analyze this function heuristically, and then prove its
optimality.

In the continuation region (i.e. t < τ ∗), Xt > g(St ) and

LV (x, s) := λs − rV (x, s) + µx
∂V (x, s)

∂x
+ 1

2
σ 2x2 ∂2V (x, s)

∂x2 = 0, (7)

which is derived using the infinitesimal generator of geometric Brownian motion (see [10]).
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In the stopping region (i.e. t ≥ τ ∗), Xt ≤ g(St ) and we have dSt = 0 unless Xt = St , since
any change in the nondecreasing process St occurs only when Xt = St . Moreover, we can
stop only when a signal is received, and the probability of receiving a signal in time �t is λ�t ,
starting from time 0. Thus, if we choose to stop at time �t , we have

V (x, s)

≥ e−r�t (sλ�t + (1 − λ�t) E[V (X�t , S�t )])

= λs�t + (1 − r�t)(1 − λ�t)

(
V (x, s) + ∂V (x, s)

∂x
µx�t + 1

2
σ 2x2 ∂2V (x, s)

∂x2 �t

)
.

The equality holds only when the value function is optimal. Therefore, when x ≤ g(s), we see
that

L̃V (x, s) := λs − (λ + r)V (x, s) + µx
∂V (x, s)

∂x
+ 1

2
σ 2x2 ∂2V (x, s)

∂x2 = 0. (8)

Equations (7) and (8) can be summarized in the form of a Hamilton–Jacobi–Bellman-type
equation, as follows:

max(L̃V (x, s), LV (x, s)) = 0.

First, notice that the general form of the solution to LV (x, s) = 0 is

V (x, s) = A(s)xα + B(s)xβ, (9)

where α and β are as in (4) and A(s) and B(s) are some functions to be determined. On the
other hand, L̃V (x, s) = 0 has a solution of the form

V (x, s) = λs

λ + r
+ C(s)xα + D(s)xβ, (10)

where α and β, α > 1 > 0 > β, are the roots of −(r + λ) + µx + 1
2σ 2x(x − 1) = 0, r > µ,

given by

α =
1
2σ 2 − µ +

√
( 1

2σ 2 − µ)2 + 2(r + λ)σ 2

σ 2 ,

β =
1
2σ 2 − µ −

√
( 1

2σ 2 − µ)2 + 2(r + λ)σ 2

σ 2 ,

(11)

and C(s) and D(s) are some functions to be determined. Note also that when x = 0, the value
function is finite, implying that D(s) = 0.

Next, observe that

Sτ = max
(
s, sup

0≤t≤τ

Xt

)
= max

(
s, x sup

0≤t≤τ

exp((µ − 1
2σ 2)t + σWt)

)

= s max

(
1,

x

s
sup

0≤t≤τ

exp

((
µ − 1

2
σ 2

)
t + σWt

))
. (12)

This suggests that the value function V ∗(x, s, λ) is linear, i.e. V ∗(x, s, λ) = sF (x/s) for some
function F . Therefore, V (x, s) should have the same property, and the boundary x = g(s)

should take the form x = g(s) = a∗s for some threshold a∗, 0 ≤ a∗ ≤ 1.
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In other words, we expect that

τ ∗ = inf{t > 0 : Xt ≤ a∗St } (13)

and

V (x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cs

(
x

s

)α

+ λ

λ + r
s, x ≤ a∗s,

As

(
x

s

)α

+ Bs

(
x

s

)β

, s ≥ x ≥ a∗s.

Thus, to determine V (x, s), we must find the unknown constants A, B, C, and a∗. To this end,
we will apply the smooth-fit principle.

A smooth fit at x = a∗s, the boundary between the stopping region and the continuation
region, according to (13) gives

V (x+, s) = V (x−, s) = s (14)

and
∂V

∂x
(x+, s) = ∂V

∂x
(x−, s). (15)

In addition, we have the following smooth condition at x = s (see Remark 3, below):

∂V (x, s)

∂s

∣∣∣∣
x=s

= 0. (16)

Combining (9)–(16) leads to

(1 − α)A + (1 − β)B = 0,

Cs(a∗)α + λs

λ + r
= As(a∗)α + Bs(a∗)β = s,

αA(a∗)α + βB(a∗)β = αC(a∗)α.

We find that

a∗ =
(

rα/(λ + r) − β

rα/(λ + r) − α

1 − α

1 − β

)1/(α−β)

(17)

and

A = 1

α − β

(
rα

λ + r
− β

)
a−α, B = −1

α − β

(
rα

λ + r
− α

)
a−β, C = r

λ + r
a−α.

That is,

V (x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s

α − β

((
rα

λ + r
− β

)(
x

a∗s

)α

−
(

rα

λ + r
− α

)(
x

a∗s

)β)
, x > a∗s,

λ

λ + r
s + r

λ + r
s

(
x

a∗s

)α

, x ≤ a∗s.
(18)

Having solved V (x, s) using the Hamilton–Jacobi–Bellman equation, we see that, in order
for V (x, s) to be a correct candidate for the value function, we should have V (x, s) ≥ s in the
continuation region (i.e. x > a∗s), and V (x, s) ≤ s in the stopping region (i.e. x ≤ a∗s). In
fact, V (x, s) satisfies the following variational relations.
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Proposition 1. The function V (x, s) is C2 on (0, ∞) × (0, ∞) except along the line x = a∗s,
where it is C1. Furthermore,

V (x, s) ≥ 0,

V (x, s) = s, x = a∗s,
LV (x, s) = 0, x ≥ a∗s,
L̃V (x, s) = 0, x ≤ a∗s,

V (x, s) ≥ s, x ≥ a∗s,
V (x, s) ≤ s, x ≤ a∗s,

∂V (x, s)

∂s
= 0, x = s.

Proof. Of these relations, it remains to check that V (x, s) ≥ s for x ≥ a∗s. Recalling that
V (a∗s, s) = s, the conclusion is immediate, following from the facts that V (x, s) ≥ s for
x ≥ a∗s and V (·, s) is an increasing function on x ≥ a∗s.

We now show that our heuristic derivation of V (x, s) is indeed the optimal value function
V ∗(x, s) for large λ. This is accomplished by introducing the auxiliary value function V0(x, s),
as in [5], where

V0(x, s) = max(V (x, s), s).

It can be shown (see [5]) that V0(x, s) corresponds to the value function with the additional
choice of stopping at 0.

Theorem 1. When r > µ and λ > 2r(r − µ)/σ 2, we have V ∗(x, s, λ) = V (x, s), where

V (x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s

α − β

((
rα

λ + r
− β

)(
x

a∗s

)α

−
(

rα

λ + r
− α

)(
x

a∗s

)β)
, s ≥ x ≥ a∗s,

λ

λ + r
s + r

λ + r
s

(
x

a∗s

)α

, x ≤ a∗s,

with a∗ < 1 as in (17), α and β as in (4), and α and β as in (11). The optimal stopping time
τ ∗ is given by

τ ∗ = inf{τn : Xτn ≤ a∗Sτn}.
In particular, since τn − τn−1 has an exponential distribution with parameter λ and is indepen-
dent of τi , i ≤ n − 1, {e−rτnV0(Xτn, Sτn)} is a nonnegative supermartingale.

Before proving Theorem 1, several remarks are in order.

Remark 1. The smooth-fit principle in general requires at least C1 smoothness across the
boundary, but this is not sufficient for the principle to apply. One example in which the
principle is not sufficient can be found in [7]. Furthermore, this principle is not necessary in
solving our optimal stopping problem for small λ, as we will see later in this paper.

Remark 2. Both this paper and [16] extensively exploit the linearity of the value function in
determining the free boundary x = g(s). This is consistent with results of [6], which showed
that the threshold-type solution structure of [16] depends on the linearity of the payoff function
and the Markov structure of Xt/St . On the other hand, [7] gave an example of an optimal
stopping problem with a nonlinear payoff function solved with a nonlinear free boundary.
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Remark 3. The smooth-fit condition in (16) is similar to the one used in [8], where such a
condition involving suprema first appeared. There it was attributed to ‘the extreme nature’ of
the value function.

2.1.2. Key steps in proving optimality: Theorem 1. The proof of Theorem 1 combines the key
ideas presented in [5] and [16], in addition to two simple technical lemmas.

Lemma 1. When λ > 2r(r − µ)/σ 2, we have 0 < a∗ < 1.

Proof. From the expressions in (17), (4), and (11), it is clear that α, α > 1 and β, β < 0,
and it suffices to show that

r

r + λ
α ≤ 1 < α.

This holds when (r/(r + λ))α ≤ 1, which is equivalent to√
r2

( 1
2σ 2 − µ

)2 + 2r2(r + λ)σ 2 ≤ (r + λ)σ 2 − r
( 1

2σ 2 − µ
)
.

This, in turn, can be reduced to λ > 2r(r − µ)/σ 2.

Remark 4. Evidently, if λ ≤ 2r(r − µ)/σ 2 then rα/(r + λ) ≥ 1.

Lemma 2. For V (x, s) as given in (18), we have

E

[∫ T

0

∣∣∣∣∂V

∂x
(Xt , St )

∣∣∣∣2

σ 2X2
t dt

]
< ∞.

Proof. Since Vx(x, s) is bounded by a constant, it suffices to prove that E[∫ T

0 X2
t dt] < ∞.

Notice that E[X2
t ] = xeµt < ∞ for any t , 0 ≤ t ≤ T . Therefore, the proof follows from

Fubini’s theorem.

With these two lemmas, Theorem 1 can be proved by first verifying that e−rτnV0(Xτn, Sτn)

is a nonnegative, uniformly integrable supermartingale. Then, with this supermartingale, the
optimality of the value function, i.e. V ∗(x, s) = V (x, s), is straightforward to prove using the
optional sampling theorem [13] and the strong Markov property of (Xt , St ): we simply modify
the proof in Section 3 of [5] by replacing V0(St ) and (St − K)+ (in the notation of [5]) with
V0(Xt , St ) and St , respectively.

For completeness, we present the proof in Appendix A.

2.2. Infrequent signals

If signals arrive infrequently, then the decision to stop has to be made in a timely manner.
Otherwise, waiting for the next signal will take so long that the discount factor e−rt will offset
any gain in St . Intuitively, it is optimal to stop immediately the first signal arrives. Our analysis
formalizes this intuition.

Consider the stopping strategy of τ = τ1, for which the expected return is f (x, s) =
Ex,s[e−rτ1Sτ1 ]. If it is suboptimal not to stop at τ1 for this value function, then an argument
similar to those in the previous section yields

−rf (x, s) + µx
∂f (x, s)

∂x
+ 1

2
σ 2x2 ∂2f (x, s)

∂x2 ≤ 0.
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Moreover, since we do not have the freedom to stop immediately, we expect our return to be
no larger than s when we stop at τ1 (and to be even smaller if we continue). In short, we will
look for a smooth function f (x, s) that satisfies the following variational relations:

f (x, s) ≥ 0,

Lf (x, s) ≤ 0,

L̃f (x, s) = 0, (19)

f (x, s) ≤ s,

∂f (x, s)

∂s

∣∣∣∣
x=s

= 0.

Proposition 2. The function

Z(x, s) = λ

λ + r
s

(
1 + 1

α − 1

(
x

s

)α)
(20)

is C2on (0, ∞) × (0, ∞) and solves the variational relation (19).

Proof. Solving L̃Z(x, s) = 0 and using the linearity of the value function yields

Z(x, s) = λs

λ + r
+ Cs

(
x

s

)α

,

where C is uniquely determined by (∂Z(x, s)/∂s)|x=s = 0 to equal λ/[(λ + r)(α − 1)]. With
this solution, it is trivial to verify that indeed L̃Z(x, s) = 0.

If we could show that Z(x, s) ≤ s, then LZ(x, s) ≤ 0 would follow directly from
L̃Z(x, s) = 0. To show that Z(x, s) < s, notice that Z(x, s) is an increasing function
of x; therefore, it is sufficient to check that Z(s, s) ≤ s. This translates into proving that
λα/[(λ + r)(α − 1)] ≤ 1, or, equivalently, that rα/(λ + r) ≤ 1. This last inequality is
immediate from Remark 4 with λ ≤ 2r(r − µ)/σ 2.

Next, we show that Z(x, s) is the optimal solution and is obtained by stopping at the first
signal τ1.

Theorem 2. When r > µ and λ ≤ 2r(r − µ)/σ 2, we have V ∗(x, s, λ) = Z(x, s), with Z(x, s)

as given in (20), and τ ∗ = τ1.

Proof. The essence of the proof is similar to that when λ > λ∗. Define

YT = e−(r+λ)T Z(XT , ST ) +
∫ T

0
λe−(r+λ)tSt dt.

Since dSt = 0 (unless Xt = St ) and Zs(s, s) = 0, by applying Itô’s rule we see that Yt is a
martingale.

Next, from (20), we clearly have

E

[∫ T

0

∣∣∣∣∂Z

∂x
(Xt , St )

∣∣∣∣2

σ 2X2
t dt

]
< ∞.
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Thus, YT is a martingale such that

Z(x, s) = Ex,s[Y0] = Ex,s[YT ] = Ex,s[e−(r+λ)T Z(XT , ST )] + Ex,s

[∫ T

0
λe−(r+λ)tSt dt

]
.

Note that Z(x, s) ≤ Ks uniformly for a constant K when r > µ. Thus,

lim sup
T →∞

Ex,s[e−(r+λ)T Z(XT , ST )] ≤ Ke−(r+λ)T E[ST ] ≤ Ke−(r+λ)T (s + xeµT ) → 0

when r > µ. Hence, the monotone convergence theorem implies that

Z(x, s) = E

[∫ ∞

0
λe−(r+λ)tSt dt

]

and

s ≥ Z(x, s) = E

[∫ ∞

0
λe−(r+λ)tSt dt

]
= Ex[e−rτnSτn ].

Moreover, {e−rτnSτn} is a nonnegative, uniformly integrable supermartingale, following the
analysis in the previous section.

Therefore, the optional sampling theorem [13] leads to

s ≥ Ex,s[e−rτ1Sτ1 ] ≥ Ex,s[e−rτN SτN
],

from which we obtain

Ex,s[e−rτN SτN
] ≤ Ex,s[e−rτ1Sτ1 ] = Ex,s

[∫ ∞

0
λe−(r+λ)tSt dt

]
= Z(x, s),

and Z(x, s) ≥ V ∗(x, s, λ).

Finally,
Z(x, s) = V ∗(x, s, λ)

is derived directly from (again) the strong Markov property of (Xt , St ):

Ex,s[e−rτ∗
Sτ∗ ] = Ex,s

[∫ ∞

0
λe−rτ∗

Ex,s[e−rτ∗
Sτ∗ | τ1 = t] dt

]

= Ex,s

[ ∫ ∞

0
λe−(r+λ)t EXt ,St [e−rτ∗

0 Sτ∗
0
] dt

]

= Ex,s

[∫ ∞

0
λe−(r+λ)tSt dt

]
= Z(x, s),

where τ ∗
0 ∈ B ∪ {0}.

3. Comparison with Shepp and Shiryayev [15]

We have solved the optimal stopping problem of determining (5) for a subset B �⊂ B. It is
interesting to compare our results with those of [15]. First, consider the following proposition.

Proposition 3. Direct calculations show that a∗ ≥ a, where a and a∗ are given by (3) and (17),
respectively.
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This has a clear interpretation. The stopping rules in both cases (1) and (5) are based on
the ratio Xt/St , except that the latter has a restriction on the choice of stopping times. With
this constraint, we should be more ‘conservative’ and continue only when Xt is closer to St

(i.e. Xt/St is larger), so that the chance of getting an increase in St is higher. Thus, a∗ > a.
Moreover, if the freedom to stop is restricted, then the corresponding optimal value function

is naturally smaller than that obtained without restrictions.

Proposition 4. We have V ∗(x, s, λ) ≤ V∞(x, s), where V∞(x, s), given in [15], is such that

V∞(x, s) =

⎧⎪⎨
⎪⎩

s

α − β

(
−β

(
x

as

)α

+ α

(
x

as

)β)
, s ≥ x ≥ as,

s, x ≤ as.

Proof. For λ ≤ 2r(r − µ)/σ 2, this proposition is obvious, with

V ∗(x, s, λ) < s ≤ V∞(x, s).

For λ > 2r(r − µ)/σ 2, it is clear that V ∗(x, s, λ) ≤ s ≤ V∞(x, s) for x ≤ a∗s. To prove
the statement for x ≥ a∗s > as, it suffices to show that (a/a∗)β(α − rα/(r + λ)) ≤ α and
(a/a∗)α(rα/(r + λ) − β) ≤ −β. If we replace a and a∗ by the expressions in (3) and (17),
respectively, the first inequality becomes(

β(rα/(r + λ) − α)

α(rα/(r + λ) − β)

)β/(α−β)(
α − rα

r + λ

)
≤ α,

which is equivalent to(
α − rα

r + λ

)α/(α−β)(
rα

r + λ
− β

)−β/(α−β)

≤ αα/(α−β)(−β)−β/(α−β).

Define f (x) = (α − x)α/(α−β)(x − β)−β/(α−β). It is sufficient to show that when 0 ≤ x ≤ α,
we have f (x) ≤ f (0). This is obvious since

f ′(x) = (−x)(α − x)α/(α−β)−1(x − β)−β/(α−β)−1 ≤ 0.

The second inequality can be verified in the same way.

Proposition 5. We have V ∗(x, s, λ) → V∞(x, s) as λ → ∞.

Proof. When (x, s) ∈ {(x, s), x ≤ as}, we have V∞(x, s) = s and

V ∗(x, s, λ) = λ

λ + r
s + r

λ + r
s

(
x

a∗s

)α

;

hence, as λ → ∞, we have V ∗(x, s, λ) → s = V∞(x, s).
When (x, s) ∈ {(x, s), x > as}, since a∗ → a there exists a λ1 ≥ 2r(r − µ)/σ 2 such that

(x, s) ∈ {(x, s), x ≥ a∗s} when λ ≥ λ1. Therefore,

V ∗(x, s, λ) = s

α − β

((
rα

λ + r
− β

)(
x

a∗s

)α

−
(

rα

λ + r
− α

)(
x

a∗s

)β)
and, hence, as λ → ∞, we have

V ∗(x, s, λ) → s

α − β

(
−β

(
x

as

)α

+ α

(
x

as

)β)
= V∞(x, s).
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4. Conclusion

In this paper, we have solved an optimal stopping problem for a geometric Brownian motion
in which the payoff function involves the running maximum and there is a constraint of random
stopping. We could consider variants of the problem of determining (5), for instance the case
in which Xt is taken to be a Brownian motion instead of a geometric Brownian motion and
the corresponding payoff function is taken to be Sτ − rτ instead of e−rτ Sτ . It follows almost
verbatim from the analysis in this paper that the solution structure remains the same.

Appendix A. Proof of Theorem 1

Our first claim is that e−rτnV0(Xτn, Sτn) is a nonnegative, uniformly integrable supermartin-
gale. This can be proved in three steps.

Step 1. From (9), we see that

−(λ + r)V (x, s) + µx
∂V (x, s)

∂x
+ 1

2
σ 2x2 ∂2V (x, s)

∂x2 + λV0(x, s) = 0.

Now define

YT = e−(r+λ)T V (XT , ST ) +
∫ T

0
λe−(r+λ)tV0(Xt , St ) dt.

Applying Itô’s rule to Yt , as in [16], it is easy to see that YT is a martingale by recalling that
dSt = 0 (unless Xt = St ) and Vs(s, s) = 0 and by using Lemma 2. Thus,

V (x, s) = Ex,s[Y0]
= Ex,s[YT ]

= Ex,s[e−(r+λ)T V (XT , ST )] + Ex,s

[∫ T

0
λe−(r+λ)tV0(Xt , St ) dt

]
.

Step 2. Note that V (x, s) ≤ Ks uniformly for a constant K when r > µ. Therefore,

lim sup
T →∞

Ex,s[e−(r+λ)T V (XT , ST )] ≤ Ke−(r+λ)T E[ST ] ≤ Ke−(r+λ)T (s + xeµT ) → 0.

By taking T → ∞ and using the monotone convergence theorem, we find that

V (x, s) = Ex,s

[∫ ∞

0
λe−(r+λ)tV0(Xt , St ) dt

]
. (21)

Thus,

V0(x, s) ≥ V (x, s) = E

[∫ ∞

0
λe−(r+λ)tV0(Xt , St ) dt

]
= Ex[e−rGV0(XG, SG)],

where G is an exponential random variable with parameter λ.

Step 3. We claim that e−rτnV0(Xτn, Sτn) is uniformly integrable. This is because V0(Xt , St )

is bounded by KSt and there exists a p > 1 for which sup0≤t<∞ E[|e−rtSt |p] < ∞, following
a more general result of [6].
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We are now ready to prove the optimality of the value function, i.e. V ∗(x, s) = V (x, s).
First, the optional sampling theorem [13] implies that

V0(x, s) ≥ Ex,s[e−rτ1V0(Xτ1 , Sτ1)] ≥ Ex,s[e−rτN V0(XτN
, SτN

)] ≥ Ex,s[e−rτN SτN
].

This, combined with (21), leads to

Ex,s[e−rτN SτN
] ≤ Ex,s[e−rτN V0(XτN

, SτN
)]

≤ V0(Xτ1 , Sτ1)]
= E

[∫ ∞

0
λe−(r+λ)tV0(Xt , St ) dt

]
= V (x, s).

By taking the supremum of all stopping times τn, we find, for all x ≤ s, that

V (x, s) ≥ V ∗(x, s, λ).

The equality V (x, s) = V ∗(x, s, λ) now follows naturally from the strong Markov property
of (Xt , St ), such that

Ex,s[e−rτ∗
Sτ∗ ] = Ex,s

[∫ ∞

0
λe−rτ∗

Ex,s[e−rτ∗
Sτ∗ | T1 = t] dt

]

= Ex,s

[∫ ∞

0
λe−(r+λ)t EXt ,St [e−rτ∗

0 Sτ∗
0
] dt

]

= E

[∫ ∞

0
λe−(r+λ)tV0(Xt , St ) dt

]
= V (x, s),

where τ ∗
0 ∈ B ∪ {0} in augmenting the choice of stopping time at t = 0.

Acknowledgements

We thank the anonymous referees for their very careful evaluation of our manuscript and for
their insightful and constructive comments and suggestions.

References

[1] Benes, V. E., Shepp, L. and Witsenhauser, H. S. (1980). Some solvable stochastic control problems.
Stochastics 4, 39–83.

[2] Chernoff, H. (1961). Sequential tests for the mean of a normal distribution. In Proc. 4th Berkeley Symp. Statist.
Prob. Vol. 1, University of California Press, Berkeley, CA, pp. 79–91.

[3] Dubins, L. E., Shepp, L. and Shiryaev, A. (1993). Optimal stopping rules and maximal inequalities for Bessel
processes. Theory Prob. Appl. 38, 226–261.

[4] Duffie, D. and Harrison, M. (1993). Arbitrage pricing of perpetual lookback options. Ann. Appl. Prob. 3,
641–651.

[5] Dupuis, P. and Wang, H. (2002). Optimal stopping with random intervention time. Adv. Appl. Prob. 34, 141–
157.

[6] Guo, X. (2001). An explicit solution to an optimal stopping time with regime switching. J. Appl. Prob. 38,
454–481.

[7] Guo, X. and Shepp, L. (2001). Some optimal stopping problems with non-trivial boundaries in pricing exotic
options. J. Appl. Prob. 39, 1–12.



838 X. GUO AND J. LIU

[8] Jacka, S. D. (1991). Optimal stopping and best constants for Doob-like inequalities: the case p = 1. Ann. Prob.
19, 1798–1821.

[9] Jacka, S. D. (1991). Optimal stopping and the American put. Math. Finance 1, 1–14.
[10] Karatzas, I. and Shreve, S. E. (1998). Brownian Motion and Stochastic Calculus (Graduate Texts Math.

113). Springer, New York.
[11] Krylov, N. V. (1980). Controlled Diffusion Process. Springer, New York.
[12] McKean, H. P. (1965). Appendix: A free boundary problem for the heat equation arising from a problem in

mathematical economics. Industrial Manag. Rev. 6, 32–39.
[13] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.
[14] Rogers, L. C. G. and Zane, O. (2000). A simple model of liquidity effects. In Advances in Finance and

Stochastics, eds. K. Sandmann and P. Schoenbucher, Springer, Berlin, pp. 161–176.
[15] Shepp, L. and Shiryayev, A. N. (1993). The Russian option: reduced regret. Ann. Appl. Prob. 3, 631–640.
[16] Shepp, L. A. and Shiryaev, A. N. (1994). A new look at the “Russian Option”. Theory Prob. Appl. 39, 103–119.
[17] Van Moerbeke, P. L. J. (1976). On optimal stopping and free boundary problems. Archive Rational Mech. Anal.

60, 101–148.


